Three Metabolic Pathways
(Text Pg 82 – 86)

1. ATP – PC (Anaerobic Alactic)

2. Glycolysis (Anaerobic Lactic)

3. Aerobic Oxidative (Aerobic Alactic)
 - Oxidative Phosphorylation
 - CELLULAR RESPIRATION (Glycolysis → Krebs Cycle → Electron Transport Chain)

1. The High Energy Phosphate System

 When? Initial onset of activity (quick bursts)
 Where? Cytoplasm
 Peak Production Lasts? 10 – 15 seconds
 Substrate? Phosphocreatine
 Process? One reaction regulated by enzymes (Creatine Kinase)
 - PC + ADP → ATP + Creatine (See diagram below)

 Limitations:
 - Muscle only has small amounts of PC available
 - Only one ATP per reaction
 Benefits: Very fast rate of production of ATP
 Replenishment: during recovery phase (2 – 5 minutes) requires ATP (P, + creatine + energy ↔ ATP)
 Where in sports? Sprints, throws, jumps, power moves or explosive power

![Diagram of the High Energy Phosphate System]

Creatine Kinase (ENZYME) is responsible for the breakdown of CREATINE PHOSPHATE.
2. Anaerobic Glycolytic System (Glycolysis / Lactic Acid System)

When? All activities yet takes time to reach max output
Where? Cytoplasm
Peek Production Lasts: ~ 1 – 3 minutes
Substrate: Glucose (6 carbon sugar molecule)
Process: 11 Reactions Total
- 10 reactions: 1 glucose → 2 Pyruvate molecules
- 1 reaction: 1 Pyruvate → Acetly CoA (pyruvate oxidation)
Overall reaction
- \(\text{C}_6\text{H}_{12}\text{O}_6 + 2\text{ADP} + 2\text{P}_i \rightarrow 2\text{C}_3\text{H}_6\text{O}_3 + 2\text{ATP} + 2\text{H}_2\text{O} \)
- Uses energy from glucose to join Pi to ADP → ATP
- Also Get 2 NADH molecules (Nicotinamide Adenine Dinucleotide) *(See diagram below)*

Limitations: produces lactic acid when there is insufficient O2
- Lactic Acid = fatigue & pain
- Build up of lactic acid = inability to breakdown glucose
- Can metabolize lactic acid during cool down (aerobic exercise)

Benefits:
- Twice as many ATP as (ATP-PC system)
- Relatively quick rate of ATP production,
- Glucose is readily available in muscle and blood for this process (stored form of glucose is called glycogen)

Replenishment: During exercise and cool down to eliminate lactic acid, food consumption to replenish glucose stores
Where in sports? Middle distance (400 – 800 m), hockey shift
3. The Aerobic Oxidative Systems (Cellular Respiration)

Aerobic catabolism (in the presence of O₂) of Carbohydrate’s, fats & proteins to make ATP

When?
- Always running, takes upwards of a minute to reach full capacity (depends on intensity)
- Major contributor after ~ 90 seconds of exercise.

Where? Mitochondrion

Peak Production Lasts? indefinitely (we stop exercising before the pathways stops or before we run out of substrates)

Substrates: glucose, fats & proteins

Process:
- **Aerobic Glycolysis** (Cytoplasm)
 - 2 ATP, 2 NADH and 2 Pyruvate
- **Pyruvate Oxidation**
 - 2 Pyruvate → Acetyl CoA (2 more NADH)
- **Krebs Cycle** (Mitochondrion)
 - 6 NADH & 2 FADH₂ + 2 ATP

This cycle (also called Citric acid cycle) happens twice for each glucose molecule. This is because the result of Glycolysis is 2 Pyruvate molecules.
• **Electron Transport Chain** (in mitochondrion)
 > Converts NADH (3 ATP) and FADH\(^2\) (2 ATP)

All together we get the following:

\[
\begin{align*}
C_6H_{12}O_6 + 6O_2 + 38ADP + 38P_i & \rightarrow 6CO_2 + 38ATP + 6H_2O \\
C_6H_{12}O_6 + 6O_2 + 36ADP + 36P_i & \rightarrow 6CO_2 + 36ATP + 6H_2O
\end{align*}
\]

Limitations: Takes longer to start i.e. there is a lag period before production of ATP meets demands of activity

Benefits: One glucose = 36 – 38 ATP (18 - 19 X’s better than glycolysis)

Replenishment: During recovery & food consumption

Where in sports? Distance running, soccer, rugby, triathlon

NOTE: Cellular respiration also includes:
- Beta Oxidation (breakdown of fats to produce ATP in the presence of O\(_2\))
- Oxidative Deamination (breakdown of protein to produce ATP in the presence of O\(_2\))